Spectral theory of elliptic differential operators with indefinite weights

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

Asymmetric Elliptic Problems with Indefinite Weights

– We prove the existence of a first nontrivial eigenvalue for an asymmetric elliptic problem with weights involving the laplacian (cf. (1.2) below) or more generally the p-laplacian (cf. (1.3) below). A first application is given to the description of the beginning of the Fučik spectrum with weights for these operators. Another application concerns the study of nonresonance for the problems (1....

متن کامل

On the Spectral Theory of Singular Indefinite Sturm-liouville Operators

We consider a singular Sturm-Liouville differential expression with an indefinite weight function and we show that the corresponding self-adjoint differential operator in a Krein space locally has the same spectral properties as a definitizable operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Royal Society of Edinburgh: Section A Mathematics

سال: 2013

ISSN: 0308-2105,1473-7124

DOI: 10.1017/s0308210511000965