“Spectral implies Tiling” for three intervals revisited

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CDF-Intervals Revisited

The concept of cdf-intervals introduced in previous work is revisited with a new domain specification, inference mechanism and implementation. A cdf-interval extends traditional convex intervals over reals with a degree of knowledge attached to the data. Instead of approximating the unknown data distribution with the nearest uniform distribution, leading to a linear cdf curve, we bound the unkn...

متن کامل

Clp(intervals) Revisited 1

The design and implementation of constraint logic programming (CLP) languages over intervals is revisited. Instead of decomposing complex constraints in terms of simple primitive constraints as in CLP(BNR), complex constraints are manipulated as a whole, enabling more sophisticated narrowing procedures to be applied in the solver. This idea is embodied in a new CLP language Newton whose operati...

متن کامل

CLP(Intervals) Revisited

The design and implementation of constraint logic programming (CLP) languages over intervals is revisited. Instead of decomposing complex constraints in terms of simple primitive constraints as in CLP(BNR), complex constraints are manipulated as a whole, enabling more sophisticated narrowing procedures to be applied in the solver. This idea is embodied in a new CLP language Newton whose operati...

متن کامل

Wavelets, Tiling and Spectral Sets

We consider functions φ ∈ L(R) such that {| det(D)| 12φ(Dx−λ) : D ∈ D, λ ∈ T } forms an orthogonal basis for L(R), where D ⊂Md(R) and T ⊂ R. Such a function φ is called a wavelet with respect to the dilation set D and translation set T . We study the following question: Under what conditions can a D ⊂ Md(R) and a set T ⊂ R can be used as respectively the dilation set and the translation set of ...

متن کامل

On Fuglede’s Conjecture for Three Intervals

In this paper, we prove the Tiling implies Spectral part of Fuglede’s cojecture for the three interval case. Then we prove the converse Spectral implies Tiling in the case of three equal intervals and also in the case where the intervals have lengths 1/2, 1/4, 1/4. Next, we consider a set Ω ⊂ R, which is a union of n intervals. If Ω is a spectral set, we prove a structure theorem for the spectr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forum Mathematicum

سال: 2014

ISSN: 0933-7741,1435-5337

DOI: 10.1515/forum-2011-0129