Spectral factorization of non-symmetric polynomial matrices
نویسندگان
چکیده
منابع مشابه
A New Multichannel Spectral Factorization Algorithm for Parahermitian Polynomial Matrices
Abstract—A novel multichannel spectral factorization algorithm is illustrated in this paper. This new algorithm is based on an iterative method for polynomial eigenvalue decomposition (PEVD) called the second order sequential best rotation (SBR2) algorithm [1]. By using the SBR2 algorithm, multichannel spectral factorization problems are simply broken down to a set of single channel problems wh...
متن کاملPolynomial Spectral Factorization with Complex Coefficients
Conceptual and numerical issues related to the spectral factorization of polynomials and polynomial matrices with complex coeÆcients are studied in this report. Such investigation is motivated by the demand for reliable algorithms and CAD tools capable of solving latest signal processing problems involving complex polynomials (Ahlen and Sternad, 1993). Basic concepts of the real polynomial spec...
متن کاملEla Spectral Properties of Sign Symmetric Matrices
Spectral properties of sign symmetric matrices are studied. A criterion for sign symmetry of shifted basic circulant permutation matrices is proven, and is then used to answer the question which complex numbers can serve as eigenvalues of sign symmetric 3 × 3 matrices. The results are applied in the discussion of the eigenvalues of QM -matrices. In particular, it is shown that for every positiv...
متن کاملSpectral Functions for Real Symmetric Toeplitz Matrices
We derive separate spectral functions for the even and odd spectra of a real symmetric Toeplitz matrix, which are given by the roots of those functions. These are rational functions, also commonly referred to as secular functions. Two applications are considered: spectral evolution as a function of one parameter and the computation of eigenvalues.
متن کاملSpectral radius, symmetric and positive matrices
If ρ(A) > 1, then lim n→∞ ‖A‖ =∞. Proof. Recall that A = CJC−1 for a matrix J in Jordan normal form and regular C, and that A = CJnC−1. If ρ(A) = ρ(J) < 1, then J converges to the 0 matrix, and thus A converges to the zero matrix as well. If ρ(A) > 1, then J has a diagonal entry (J)ii = λ n for an eigenvalue λ such that |λ| > 1, and if v is the i-th column of C and v′ the i-th row of C−1, then ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2006
ISSN: 0024-3795
DOI: 10.1016/j.laa.2005.07.009