Special linear combinations of orthogonal polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Linear Combinations of Orthogonal Polynomials

In this expository paper, linear combinations of orthogonal polynomials are considered. Properties like orthogonality and interlacing of zeros are presented.

متن کامل

When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials?

Given {Pn}n≥0 a sequence of monic orthogonal polynomials, we analyze their linear combinations with constant coefficients and fixed length, i.e., Qn(x) = Pn(x) + a1Pn−1(x) + · · ·+ akPn−k, ak 6= 0, n > k. Necessary and sufficient conditions are given for the orthogonality of the sequence {Qn}n≥0. An interesting interpretation in terms of the Jacobi matrices associated with {Pn}n≥0 and {Qn}n≥0 i...

متن کامل

Linear Combinations of Orthogonal Polynomials Generating Positive Quadrature Formulas

Let pk(x) = x +■■■ , k e N0 , be the polynomials orthogonal on [-1, +1] with respect to the positive measure da . We give sufficient conditions on the real numbers p , j = 0, ... , m , such that the linear combination of orthogonal polynomials YfLo^jPn-j has n simple zeros in (—1,-1-1) and that the interpolatory quadrature formula whose nodes are the zeros of Yfj=oßjPn-j has positive weights.

متن کامل

Expected Number of Real Zeros for Random Linear Combinations of Orthogonal Polynomials

We study the expected number of real zeros for random linear combinations of orthogonal polynomials. It is well known that Kac polynomials, spanned by monomials with i.i.d. Gaussian coefficients, have only (2/π + o(1)) logn expected real zeros in terms of the degree n. On the other hand, if the basis is given by Legendre (or more generally by Jacobi) polynomials, then random linear combinations...

متن کامل

On Linear Combinations of Chebyshev Polynomials

a0Tn(x) + a1Tn−1(x) + · · ·+ amTn−m(x) where (a0, a1, . . . , am) is a fixed m-tuple of real numbers, a0, am 6= 0, Ti(x) are Chebyshev polynomials of the first kind, n = m, m + 1, m + 2, . . . Here we analyze the structure of the set of zeros of such polynomial, depending on A and its limit points when n tends to infinity. Also the expression of envelope of the polynomial is given. An applicati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2004

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2004.04.062