Spatiotemporal Recurrent Convolutional Networks for Recognizing Spontaneous Micro-Expressions
نویسندگان
چکیده
منابع مشابه
Spatiotemporal Recurrent Convolutional Networks for Traffic Prediction in Transportation Networks
Predicting large-scale transportation network traffic has become an important and challenging topic in recent decades. Inspired by the domain knowledge of motion prediction, in which the future motion of an object can be predicted based on previous scenes, we propose a network grid representation method that can retain the fine-scale structure of a transportation network. Network-wide traffic s...
متن کاملRecognizing Extended Spatiotemporal Expressions by Actively Trained Average Perceptron Ensembles
Precise geocoding and time normalization for text requires that location and time phrases be identified. Many state-of-the-art geoparsers and temporal parsers suffer from low recall. Categories commonly missed by parsers are: nouns used in a nonspatiotemporal sense, adjectival and adverbial phrases, prepositional phrases, and numerical phrases. We collected and annotated data set by querying co...
متن کاملRecurrent Convolutional Neural Networks for Text Classification
Text classification is a foundational task in many NLP applications. Traditional text classifiers often rely on many human-designed features, such as dictionaries, knowledge bases and special tree kernels. In contrast to traditional methods, we introduce a recurrent convolutional neural network for text classification without human-designed features. In our model, we apply a recurrent structure...
متن کاملRecurrent Convolutional Neural Networks for Scene Parsing
Scene parsing is a technique that consist on giving a label to all pixels in an image according to the class they belong to. To ensure a good visual coherence and a high class accuracy, it is essential for a scene parser to capture image long range dependencies. In a feed-forward architecture, this can be simply achieved by considering a sufficiently large input context patch, around each pixel...
متن کاملRecurrent Convolutional Neural Networks for Scene Labeling
The goal of the scene labeling task is to assign a class label to each pixel in an image. To ensure a good visual coherence and a high class accuracy, it is essential for a model to capture long range (pixel) label dependencies in images. In a feed-forward architecture, this can be achieved simply by considering a sufficiently large input context patch, around each pixel to be labeled. We propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Multimedia
سال: 2020
ISSN: 1520-9210,1941-0077
DOI: 10.1109/tmm.2019.2931351