Spatio-temporal control of neuronal network formation with micropatterned thermoresponsive cell culture substrates
نویسندگان
چکیده
منابع مشابه
Thermoresponsive Micropatterned Substrates for Single Cell Studies
We describe the design of micropatterned surfaces for single cell studies, based on thermoresponsive polymer brushes. We show that brushes made of poly(N-isopropylacrylamide) grafted at high surface density display excellent protein and cell anti-adhesive properties. Such brushes are readily patterned at the micron scale via deep UV photolithography. A proper choice of the adhesive pattern shap...
متن کاملMicropatterned Substrates for Studying Astrocytes in Culture
Recent studies of the physiological roles of astrocytes have ignited renewed interest in the functional significance of these glial cells in the central nervous system. Many of the newly discovered astrocytic functions were initially demonstrated and characterized in cell culture systems. We discuss the use of microculture techniques and micropatterning of cell-adhesive substrates in studies of...
متن کاملMicropatterned dynamically adhesive substrates for cell migration.
We present a novel approach to examine cell migration using dynamically adhesive substrates consisting of three spatially and functionally distinct regions: the first is permanently nonadhesive to cells, the second is permanently adhesive, and the final region is electrochemically switched from nonadhesive to adhesive. We applied a double microcontact printing approach to pattern gold surfaces ...
متن کاملProbing ciliogenesis using micropatterned substrates.
The primary cilium is a biomechanical sensor plugged in at the cell surface. It is implicated in the processing of extracellular signals and its absence or misfunctioning lead to a broad variety of serious defects known as ciliopathies. Unfortunately, the precise mechanisms underlying primary cilium assembly and operation are still poorly understood. Molecular dynamics and intracellular morphog...
متن کاملOriented astroglial cell growth on micropatterned polystyrene substrates.
In an effort to develop a permissive environment for neural stem cell differentiation, directional growth of astrocytes has been achieved on polymer substrates in vitro. Manipulating a combination of physical and chemical cues, astrocyte adhesion and alignment in vitro were examined. To provide physical guidance, micropatterned polymer substrates of polystyrene (PS) were fabricated. Laminin was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Cellular Neuroscience
سال: 2018
ISSN: 1662-5102
DOI: 10.3389/conf.fncel.2018.38.00037