Spatial-Spectral-Associative Contrastive Learning for Satellite Hyperspectral Image Classification with Transformers

نویسندگان

چکیده

Albeit hyperspectral image (HSI) classification methods based on deep learning have presented high accuracy in supervised classification, these traditional required quite a few labeled samples for parameter optimization. When processing HSIs, however, artificially are always insufficient, and class imbalance limited is inevitable. This study proposed Transformer-based framework of spatial–spectral–associative contrastive to extract both spatial spectral features HSIs by the self-supervised method. Firstly, label information generated spatial–spectral augmentation transform entropy. Then, Transformer modules used learn high-level semantic domain domain, respectively, from which cross-domain fused associative Finally, we design classifier Transformer. The invariant distinguished properties satellite further discriminant between different pixels, intersection over union imported into loss function avoid collapse caused imbalance. Conducting experiments two HSI datasets, this verified performance model. results showed that model can effective more accurate compared with model, especially average various classifications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral-Spatial Response for Hyperspectral Image Classification

This paper presents a hierarchical deep framework called Spectral-Spatial Response (SSR) to jointly learn spectral and spatial features of Hyperspectral Images (HSIs) by iteratively abstracting neighboring regions. SSR forms a deep architecture and is able to learn discriminative spectral-spatial features of the input HSI at different scales. It includes several existing spectral-spatial-based ...

متن کامل

Spectral-Spatial Hyperspectral Image Classification With Edge-Preserving Filtering

The integration of spatial context in the classification of hyperspectral images is known to be an effective way in improving classification accuracy. In this paper, a novel spectralspatial classification framework based on edge-preserving filtering is proposed. The proposed framework consists of the following three steps. First, the hyper-spectral image is classified using a pixel-wise classif...

متن کامل

Spectral/Spatial Hyperspectral Image Compression

^Remote Sensing Signal and Image Processing Laboratory Department of Computer Science and Electrical Engineering University of Maryland, Baltimore County, Baltimore, MD 21250 ^Computer Science Department, University of Extremadura Avda. de la Universidad s/n,10.071 Caceres, SPAIN ^Center for Space and Remote Sensing Research Graduate Institute of Space Science Department of Computer Science and...

متن کامل

Hyperspectral Image Classification Based on Nonlinear Spectral-Spatial Network

Recently, for the task of hyperspectral images classification, deep learning-based methods have revealed promising performance. However, the complex network structure and time-consuming training process have restricted their applications. In this letter, we construct a much simpler network, nonlinear spectral-spatial network (NSSNet), for hyperspectral images classification. NSSNet is developed...

متن کامل

Bidirectional-Convolutional LSTM Based Spectral-Spatial Feature Learning for Hyperspectral Image Classification

This paper proposes a novel deep learning framework named bidirectional-convolutional long short term memory (Bi-CLSTM) network to automatically learn the spectral-spatial feature from hyperspectral images (HSIs). In the network, the issue of spectral feature extraction is considered as a sequence learning problem, and a recurrent connection operator across the spectral domain is used to addres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2023

ISSN: ['2315-4632', '2315-4675']

DOI: https://doi.org/10.3390/rs15061612