Spatial modelling of population concentration using geographically weighted regression method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity

model which allows diferent relationships to exist at diferent points in space. This technique is loosely based on kernel regression. The method itself is introduced and related issues such as the choice of a spatial weighting function are discussed. Following this, a series of related statistical tests are considered which can be described generally as tests f o r spatial nonstationarity. Usin...

متن کامل

Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests

Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...

متن کامل

A new spatial-attribute weighting function for geographically weighted regression

In recent years, geographically weighted regression (GWR) has become popular for modeling spatial heterogeneity in a regression context. However, the current weighting function used in GWR only considers the geographical distances of trees in a stand, while the attributes (e.g., tree diameter) of the neighboring trees are totally ignored. In this study, we proposed a new weighting function that...

متن کامل

C.5 Geographically Weighted Regression

Geographically weighted regression (GWR) was introduced to the geography literature by Brunsdon et al. (1996) to study the potential for relationships in a regression model to vary in geographical space, or what is termed parametric nonstationarity. GWR is based on the non-parametric technique of locally weighted regression developed in statistics for curve-fitting and smoothing applications, w...

متن کامل

Geographically weighted regression: a natural evolution of the expansion method for spatial data analysis

Geographically weighted regression and the expansion method are two statistical techniques which can be used to examine the spatial variability of regression results across a region and so inform on the presence of spatial nonstationarity. Rather than accept one set of 'global' regression results, both techniques allow the possibility of producing 'local' regression results from any point withi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Geographical Institute Jovan Cviji?, SASA

سال: 2011

ISSN: 0350-7599

DOI: 10.2298/ijgi1103151b