Spatial Filtering for EEG-Based Regression Problems in Brain–Computer Interface (BCI)
نویسندگان
چکیده
منابع مشابه
Spatial Filtering for EEG-Based Regression Problems in Brain-Computer Interface (BCI)
Electroencephalogram (EEG) signals are frequently used in brain-computer interfaces (BCIs), but they are easily contaminated by artifacts and noises, so preprocessing must be done before they are fed into a machine learning algorithm for classification or regression. Spatial filters have been widely used to increase the signal-to-noise ratio of EEG for BCI classification problems, but their app...
متن کاملSpatial Filtering Optimisation in Motor Imagery Eeg-based Bci
Common spatial pattern (CSP) is becoming a standard way to combine linearly multi-channel EEG data in order to increase discrimination between two motor imagery tasks. We demonstrate in this article that the use of robust estimates allows improving the quality of CSP decomposition and CSP-based BCI. Furthermore, a scheme for electrode subset selection is proposed. It is shown that CSP with such...
متن کاملBayesian Learning for Spatial Filtering in an EEG-Based Brain-Computer Interface
Spatial filtering for EEG feature extraction and classification is an important tool in brain-computer interface. However, there is generally no established theory that links spatial filtering directly to Bayes classification error. To address this issue, this paper proposes and studies a Bayesian analysis theory for spatial filtering in relation to Bayes error. Following the maximum entropy pr...
متن کاملReal-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI).
Electroencephalogram (EEG) recordings during right and left motor imagery allow one to establish a new communication channel for, e.g., patients with amyotrophic lateral sclerosis. Such an EEG-based brain-computer interface (BCI) can be used to develop a simple binary response for the control of a device. Three subjects participated in a series of on-line sessions to test if it is possible to u...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Fuzzy Systems
سال: 2018
ISSN: 1063-6706,1941-0034
DOI: 10.1109/tfuzz.2017.2688423