Spatial Air Quality Prediction Using Gaussian Process
نویسندگان
چکیده
منابع مشابه
Evaluation and Application of the Gaussian-Log Gaussian Spatial Model for Robust Bayesian Prediction of Tehran Air Pollution Data
Air pollution is one of the major problems of Tehran metropolis. Regarding the fact that Tehran is surrounded by Alborz Mountains from three sides, the pollution due to the cars traffic and other polluting means causes the pollutants to be trapped in the city and have no exit without appropriate wind guff. Carbon monoxide (CO) is one of the most important sources of pollution in Tehran air. The...
متن کاملSpatial Prediction of Transport Related Urban Air Quality
The aim of this study is to explore the relationship between, transport, land-use and air quality and mapping of air pollutants by means of spatial information sciences, which would provide useful information for decision-makers. Integrated transport, land-use and air quality monitoring are prioritized especially in metropolitan areas. The complexity is straight forward, since data, indicators,...
متن کاملGaussian Process Regression Using Spatial-Temporal covariance: Research on Sea Level Prediction
It is only recent that researcher have become to realize the importance of sea level prediction. By studying the global and local sea level, we can provide critical information about the relations between the Earth’s climate or atmosphere and our oceans. In this paper, I use Gaussian Process Regression with spatial-temporal covariance for sea level prediction. I conducted experiments on a publi...
متن کاملState Space Gaussian Process Prediction
Learning accurate models of complex clinical time-series data is critical for understanding the disease and its dynamics. Modeling of clinical time-series is particularly challenging because: observations are made at irregular time intervals and may be missing for long periods of time. In this work, we propose a new model of clinical time series data that is optimized to handle irregularly samp...
متن کاملMulti-task Gaussian Process Prediction
In this paper we investigate multi-task learning in the context of Gaussian Processes (GP). We propose a model that learns a shared covariance function on input-dependent features and a “free-form” covariance matrix over tasks. This allows for good flexibility when modelling inter-task dependencies while avoiding the need for large amounts of data for training. We show that under the assumption...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2019
ISSN: 2475-8841
DOI: 10.12783/dtcse/ccme2018/28680