Sparse systems solving on GPUs with GMRES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel GMRES implementation for solving sparse linear systems on GPU clusters

In this paper, we propose an efficient parallel implementation of the GMRES method for GPU clusters. This implementation requires us to parallelize the GMRES algorithm between CPUs of the cluster. Hence, all parallel and intensive computations on local data are performed on GPUs and reduction operations to compute global results are carried out by CPUs. The performances of our parallel GMRES so...

متن کامل

Solving dense symmetric indefinite systems using GPUs

This paper studies the performance of different algorithms for solving a dense symmetric indefinite linear system of equations on multicore CPUs with a Graphics Processing Unit (GPU). To ensure the numerical stability of the factorization, pivoting is required. Obtaining high performance of such algorithms on the GPU is difficult because all the existing pivoting strategies lead to frequent syn...

متن کامل

Solving Shifted Linear Systems with Gmres and Applications to Lattice Gauge Theory Solving Shifted Linear Systems with Gmres and Applications to Lattice Gauge Theory 1. Introduction

of a matrix M 2 C nn and a vector r 2 C n are identical for all 2 C. This fact can be used in Krylov subspace iterative methods (where the

متن کامل

Solving Linear Systems with Sparse Matrices on Hypercubes

We investigate parallel Gauss elimination for sparse matrices, especially those arising from the discretization of PDEs. We propose an approach which combines minimum degree ordering, nested dissection, domain decomposition and multifront techniques. Neither symbolic factorization nor explicit representation of elimination trees are needed. An effective and economic dynamic data structure is pr...

متن کامل

Solving Sparse Integer Linear Systems

We propose a new algorithm to solve sparse linear systems of equations over the integers. This algorithm is based on a p-adic lifting technique combined with the use of block matrices with structured blocks. It achieves a sub-cubic complexity in terms of machine operations subject to a conjecture on the e ectiveness of certain sparse projections. A LinBox based implementation of this algorithm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Supercomputing

سال: 2011

ISSN: 0920-8542,1573-0484

DOI: 10.1007/s11227-011-0562-z