Sparse-smooth regularized singular value decomposition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized singular value decomposition: a sparse dimension reduction technique

Singular value decomposition (SVD) is a useful multivariate technique for dimension reduction. It has been successfully applied to analyze microarray data, where the eigen vectors are called eigen-genes/arrays. One weakness associated with the SVD is the interpretation. The eigen-genes are essentially linear combinations of all the genes. It is desirable to have sparse SVD, which retains the di...

متن کامل

Biclustering via sparse singular value decomposition.

Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse...

متن کامل

پیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )

در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...

15 صفحه اول

Time series seasonal adjustment using regularized singular value decomposition

We propose a new seasonal adjustment method based on the regularized singular value decomposition (RSVD) of the matrix obtained by reshaping the seasonal time series data. The method is flexible enough to capture two kinds of seasonality: the fixed seasonality that does not change over time and the time-varying seasonality that varies from one season to another. RSVD represents the time-varying...

متن کامل

Robust Regularized Singular Value Decomposition with Application to Mortality Data

We develop a robust regularized singular value decomposition (RobRSVD) method for analyzing two-way functional data. The research is motivated by the application of modeling human mortality as a smooth two-way function of age group and year. The RobRSVD is formulated as a penalized loss minimization problem where a robust loss function is used to measure the reconstruction error of a low-rank m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2013

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2013.02.011