Sparse Representation for Wireless Communications: A Compressive Sensing Approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Representation for Wireless Communications

Sparse representation can efficiently model signals in different applications to facilitate processing. In this article, we will discuss various applications of sparse representation in wireless communications, with focus on the most recent compressive sensing (CS) enabled approaches. With the help of the sparsity property, CS is able to enhance the spectrum efficiency and energy efficiency for...

متن کامل

Compressive Sensing Techniques for Next-Generation Wireless Communications

A range of efficient wireless processes and enabling techniques are put under a magnifier glass in the quest for exploring different manifestations of correlated processes, where sub-Nyquist sampling may be invoked as an explicit benefit of having a sparse transform-domain representation. For example, wide-band next-generation systems require a high Nyquistsampling rate, but the channel impulse...

متن کامل

STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach

Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...

متن کامل

SCANNING THE ISSUE Applications of Sparse Representation and Compressive Sensing

In the past several years, there have been exciting breakthroughs in the study of high-dimensional sparse signals. A sparse signal is a signal that can be represented as a linear combination of relatively few base elements in a basis or an overcomplete dictionary. Much of the excitement centers around the discovery that under surprisingly broad conditions, a sufficiently sparse linear represent...

متن کامل

Compressive Sensing for Cluster Structured Sparse Signals: Variational Bayes Approach

Compressive Sensing (CS) provides a new paradigm of sub-Nyquist sampling which can be considered as an alternative to Nyquist sampling theorem. In particular, providing that signals are with sparse representations in some known space (or domain), information can be perfectly preserved even with small amount of measurements captured by random projections. Besides sparsity prior of signals, the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Signal Processing Magazine

سال: 2018

ISSN: 1053-5888

DOI: 10.1109/msp.2018.2789521