Sparse Recovery From Combined Fusion Frame Measurements

نویسندگان
چکیده

منابع مشابه

Sparse Recovery of Fusion Frame Structured Signals

Fusion frames are collection of subspaces which provide a redundant representation of signal spaces. They generalize classical frames by replacing frame vectors with frame subspaces. This paper considers the sparse recovery of a signal from a fusion frame. We use a block sparsity model for fusion frames and then show that sparse signals under this model can be compressively sampled and reconstr...

متن کامل

Uniform recovery of fusion frame structured sparse signals

We consider the problem of recovering fusion frame sparse signals from incomplete measurements. These signals are composed of a small number of nonzero blocks taken from a family of subspaces. First, we show that, by using a-priori knowledge of a coherence parameter associated with the angles between the subspaces, one can uniformly recover fusion frame sparse signals with a significantly reduc...

متن کامل

Sparse Recovery from Saturated Measurements

A novel theory of sparse recovery is presented in order to bridge the standard compressive sensing framework and the one-bit compressive sensing framework. In the former setting, sparse vectors observed via few linear measurements can be reconstructed exactly. In the latter setting, the linear measurements are only available through their signs, so exact reconstruction of sparse vectors is repl...

متن کامل

Joint-sparse recovery from multiple measurements

The joint-sparse recovery problem aims to recover, from sets of compressed measurements, unknown sparse matrices with nonzero entries restricted to a subset of rows. This is an extension of the single-measurement-vector (SMV) problem widely studied in compressed sensing. We analyze the recovery properties for two types of recovery algorithms. First, we show that recovery using sum-of-norm minim...

متن کامل

Sparse Signal Recovery from Nonadaptive Linear Measurements

The theory of Compressed Sensing , the emerging sampling paradigm ‘that goes against the common wisdom’ , asserts that ‘one can recover signals in R from far fewer samples or measurements , if the signal has a sparse representation in some orthonormal basis, from m ≈ O(klogn), k ≪ n nonadaptive measurements . The accuracy of the recovered signal is as good as that attainable with direct knowled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2011

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2011.2143890