Sparse Poisson regression with penalized weighted score function
نویسندگان
چکیده
منابع مشابه
Penalized Function-on-Function Regression
A general framework for smooth regression of a functional response on one or multiple functional predictors is proposed. Using the mixed model representation of penalized regression expands the scope of function-on-function regression to many realistic scenarios. In particular, the approach can accommodate a densely or sparsely sampled functional response as well as multiple functional predicto...
متن کاملSparse Brain Network using Penalized Linear Regression
Sparse partial correlation is a useful connectivity measure for brain networks, especially, when it is hard to compute the exact partial correlation due to the small-n large-p situation. In this paper, we consider a sparse linear regression model with a l1-norm penalty for estimating sparse brain connectivity based on the partial correlation. For the numerical experiments, we construct the spar...
متن کاملBayesian proportional hazards model with time-varying regression coefficients: a penalized Poisson regression approach.
One can fruitfully approach survival problems without covariates in an actuarial way. In narrow time bins, the number of people at risk is counted together with the number of events. The relationship between time and probability of an event can then be estimated with a parametric or semi-parametric model. The number of events observed in each bin is described using a Poisson distribution with t...
متن کاملPenalized Quantile Regression in Sparse High-dimensional Models
This paper studies high-dimensional parametric quantile regression models, where the dimension of the model increases with the sample size. we focus on the highdimensional low sample size (HDLSS) setting where the number of covariates is allowed to be larger than the sample size. The underlying assumption of the model that allows for a meaningful estimation is the sparseness of the true model. ...
متن کامل- Penalized Quantile Regression in High - Dimensional Sparse Models
We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of the response variable, where s grows slower than n. Since in this case the ordinary quantile regressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2019
ISSN: 1935-7524
DOI: 10.1214/19-ejs1580