Sparse optimization problem with s-difference regularization
نویسندگان
چکیده
منابع مشابه
Group Sparse Optimization via lp, q Regularization
In this paper, we investigate a group sparse optimization problem via `p,q regularization in three aspects: theory, algorithm and application. In the theoretical aspect, by introducing a notion of group restricted eigenvalue condition, we establish an oracle property and a global recovery bound of order O(λ 2 2−q ) for any point in a level set of the `p,q regularization problem, and by virtue o...
متن کاملSparse Regularization with l Penalty Term
We consider the stable approximation of sparse solutions to non-linear operator equations by means of Tikhonov regularization with a subquadratic penalty term. Imposing certain assumptions, which for a linear operator are equivalent to the standard range condition, we derive the usual convergence rate O( √ δ) of the regularized solutions in dependence of the noise level δ. Particular emphasis l...
متن کاملSparse Reduced Rank Regression With Nonconvex Regularization
In this paper, the estimation problem for sparse reduced rank regression (SRRR) model is considered. The SRRR model is widely used for dimension reduction and variable selection with applications in signal processing, econometrics, etc. The problem is formulated to minimize the least squares loss with a sparsity-inducing penalty considering an orthogonality constraint. Convex sparsity-inducing ...
متن کاملNon-convex Sparse Regularization
We study the regularising properties of Tikhonov regularisation on the sequence space l with weighted, non-quadratic penalty term acting separately on the coefficients of a given sequence. We derive sufficient conditions for the penalty term that guarantee the well-posedness of the method, and investigate to which extent the same conditions are also necessary. A particular interest of this pape...
متن کاملNon-Sparse Regularization with Multiple Kernels
Security issues are crucial in a number of machine learning applications, especially in scenarios dealing with human activity rather than natural phenomena (e.g., information ranking, spam detection, malware detection, etc.). It is to be expected in such cases that learning algorithms will have to deal with manipulated data aimed at hampering decision making. Although some previous work address...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2020
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2019.107369