Sparse Locally Linear Embedding

نویسندگان
چکیده

منابع مشابه

Guided Locally Linear Embedding

Nonlinear dimensionality reduction is the problem of retrieving a low-dimensional representation of a manifold that is embedded in a high-dimensional observation space. Locally Linear Embedding (LLE), a prominent dimensionality reduction technique is an unsupervised algorithm; as such, it is not possible to guide it toward modes of variability that may be of particular interest. This paper prop...

متن کامل

Robust locally linear embedding

In the past few years, some nonlinear dimensionality reduction (NLDR) or nonlinear manifold learning methods have aroused a great deal of interest in the machine learning community. These methods are promising in that they can automatically discover the low-dimensional nonlinear manifold in a high-dimensional data space and then embed the data points into a low-dimensional embedding space, usin...

متن کامل

Supervised Locally Linear Embedding

Locally linear embedding (LLE) is a recently proposed method for unsupervised nonlinear dimensionality reduction. It has a number of attractive features: it does not require an iterative algorithm, and just a few parameters need to be set. Two extensions of LLE to supervised feature extraction were independently proposed by the authors of this paper. Here, both methods are unified in a common f...

متن کامل

Incremental locally linear embedding

The locally linear embedding (LLE) algorithm belongs to a group of manifold learning methods that not only merely reduce data dimensionality, but also attempt to discover a true low dimensional structure of the data. In this paper, we propose an incremental version of LLE and experimentally demonstrate its advantages in terms of topology preservation. Also compared to the original (batch) LLE, ...

متن کامل

Robust Locally-Linear Controllable Embedding

Embed-to-control (E2C) [17] is a model for solving high-dimensional optimal control problems by combining variational autoencoders with locally-optimal controllers. However, the current E2C model suffers from two major drawbacks: 1) its objective function does not correspond to the likelihood of the data sequence and 2) the variational encoder used for embedding typically has large variational ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2017

ISSN: 1877-0509

DOI: 10.1016/j.procs.2017.05.171