Sparse hypergraphs with low independence number
نویسندگان
چکیده
منابع مشابه
Sparse hypergraphs with low independence number
Let K (3) 4 denote the complete 3-uniform hypergraph on 4 vertices. Ajtai, Erdős, Komlós, and Szemerédi (1981) asked if there is a function ω(d) → ∞ such that every 3-uniform, K (3) 4 -free hypergraph H with N vertices and average degree d has independence number at least N d1/2 ω(d). We answer this question by constructing a 3-uniform, K (3) 4 -free hypergraph with independence number at most ...
متن کاملNew Lower Bounds for the Independence Number of Sparse Graphs and Hypergraphs
We obtain new lower bounds for the independence number of Kr-free graphs and linear kuniform hypergraphs in terms of the degree sequence. This answers some old questions raised by Caro and Tuza [7]. Our proof technique is an extension of a method of Caro and Wei [6, 20], and we also give a new short proof of the main result of [7] using this approach. As byproducts, we also obtain some non-triv...
متن کاملConstructions of sparse uniform hypergraphs with high chromatic number
Arandomconstruction gives newexamples of simple hypergraphswith high chromatic number that have few edges and/or lowmaximumdegree. In particular, for every integers k ≥ 2, r ≥ 2, and g ≥ 3, there exist r-uniform non-k-colorable hypergraphs of girth at least g with maximum degree at most r kr−1 ln k . This is only 4r2 ln k times greater than the lower bound by Erdős and Lovász (ColloquiaMath Soc...
متن کاملA lower bound on the independence number of arbitrary hypergraphs
We present a lower bound on the independence number of arbitrary hypergraphs in terms of the degree vectors. The degree vector of a vertex v is given by d(v) = (d 1 (v); d 2 (v); : : :) where d m (v) is the number of edges of size m containing v. We deene a function f with the property that any hypergraph H = (V; E) satisses (H) P v2V f(d(v)). This lower bound is sharp when H is a matching, and...
متن کاملIndependence densities of hypergraphs
We consider the number of independent sets in hypergraphs, which allows us to define the independence density of countable hypergraphs. Hypergraph independence densities include a broad family of densities over graphs and relational structures, such as F -free densities of graphs for a given graph F. In the case of kuniform hypergraphs, we prove that the independence density is always rational....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorica
سال: 2015
ISSN: 0209-9683,1439-6912
DOI: 10.1007/s00493-014-3219-8