Some Theorems of Fixed Point Approximations By Iteration Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Fixed Point Theorems

Introduction. We wish to summarize here some new asymptotic fixed point theorems. By an asymptotic fixed point theorem we mean roughly a theorem in functional analysis in which the existence of fixed points of a map ƒ is proved with the aid of assumptions on the iterates f of ƒ. Such theorems have proved of use in the theory of ordinary and functional differential equations (see [7], [8], [9] a...

متن کامل

Some fixed point theorems and common fixed point theorem in log-convex structure

Some fixed point theorems and common fixed point theorem in Logarithmic convex structure areproved.

متن کامل

Some common fixed point theorems for Gregus type mappings

In this paper, sufficient conditions for the existence of common fixed points for a compatible pair of self maps of Gregustype in the framework of convex metric spaces have been obtained. Also, established the existence of common fixed points for a pair of compatible mappings of type (B) and consequently for compatible mappings of type (A). The proved results generalize and extend some of the w...

متن کامل

Some New Fixed Point Theorems in Fuzzy Metric Spaces

Motivated by Samet et al. [Nonlinear Anal., 75(4) (2012), 2154-2165], we introduce the notions of $alpha$-$phi$-fuzzy contractive mapping and $beta$-$psi$-fuzzy contractive mapping and prove two theorems which ensure the existence and uniqueness of a fixed point for these two types of mappings. The presented theorems extend, generalize and improve the corresponding results given in the literature.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2021

ISSN: 1742-6588,1742-6596

DOI: 10.1088/1742-6596/1818/1/012153