Some representation theorems for partially ordered sets

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ordering Subsets of (partially) Ordered Sets: Representation Theorems

In many practical situations, we have a (partially) ordered set V of different values. For example, we may have the set of all possible values of temperature, or the set of all possible degrees of confidence in a statement. In practice, we are often uncertain about the exact value of the quantity. Due to this uncertainty, at best, we know a set S ⊆ V of possible values of the quantity: e.g., an...

متن کامل

Tripled partially ordered sets

In this paper, we introduce tripled partially ordered sets and monotone functions on tripled partiallyordered sets. Some basic properties on these new dened sets are studied and some examples forclarifying are given.

متن کامل

Extensions of Some Fixed Point Theorems for Weak-Contraction Mappings in Partially Ordered Modular Metric Spaces

The purpose of this paper is to establish fixed point results for a single mapping in a partially ordered modular metric space, and to prove a common fixed point theorem for two self-maps satisfying some weak contractive inequalities.

متن کامل

Some sharply transitive partially ordered sets

A partially ordered set (X, is called sharply transitive if its automorphism group is sharply transitive on X, that is, it is transitive and the stabilizer of every element is triviaL It is shown that every free group is the automorphism group of a sharply transitive partially ordered set. It is also shown that there exists a sharply transitive partially ordered set (-,Y, :::;) having some maxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1956

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1956-0082957-8