Some Probabilistic Generalizations of the Cheney–Sharma and Bernstein Approximation Operators
نویسندگان
چکیده
The objective of this paper is to give some probabilistic derivations the Cheney, Sharma, and Bernstein approximation operators. Motivated by these derivations, generalizations operators are defined. convergence property generalization established. It also shown that Cheney–Sharma operator Szász–Mirakyan averaged a certain probability distribution.
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولOn simultaneous approximation for some modified Bernstein-type operators
for n ≥ α, where α, β are integers satisfying α ≥ β ≥ 0 and In ⊆ {0,1,2, . . . ,n} is a certain index set. For α = β = 0, In = {0}, this definition reduces to the BernsteinDurrmeyer operators, which were first studied by Derriennic [3]. Also if α = β = 1, In = {0}, we obtain the recently introduced sequence of Gupta and Maheshwari [4], that is, Mn,1,1(f ,x)≡ Pn(f ,x) which is defined as Pn(f ,x...
متن کاملBernstein type operators with a better approximation for some functions
In this paper we construct new operators of Bernstein type with a better approximation than the classical Bernstein operator for some classes of functions on the whole interval [0,1]. Convergence of these operators and their shape preserving properties are discussed. We determine the subintervals in [0,1] in which the approximation order of constructed operators is better than that of the Berns...
متن کاملOn some constants in approximation by Bernstein operators
We estimate the constants sup x∈(0,1) sup f∈C[0,1]\Π1 |Bn(f,x)−f(x)| ω2 f, x(1−x) n and inf x∈(0,1) sup f∈C[0,1]\Π1 |Bn(f,x)−f(x)| ω2 f, x(1−x) n , where Bn is the Bernstein operator of degree n and ω2 is the second order modulus of continuity. 2000 Mathematical Subject Classification: 41A36, 41A10, 41A25,
متن کاملOn the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators
In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2022
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms11100537