Some observations on local uniform boundedness principles

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Boundedness Principles for Ordered Topological Vector Spaces

We obtain uniform boundedness principles for a new class of families of mappings from topological vector spaces to ordered topological vector spaces. The new class of families of mappings includes the family of linear mappings and many other families which consist of nonlinear mappings. 1 Department of Mathematics, Tianjin University, Tianjin 300072, China. E-mail address: [email protected]...

متن کامل

Uniform Boundedness Principle for operators on hypervector spaces

The aim of this paper is to prove the Uniform Boundedness Principle and Banach-Steinhaus Theorem for anti linear operators and hence strong linear operators on Banach hypervector spaces. Also we prove the continuity of the product operation in such spaces.

متن کامل

Graph-distance Convergence and Uniform Local Boundedness of Monotone Mappings

In this article we study graph-distance convergence of monotone operators. First, we prove a property that has been an open problem up to now: the limit of a sequence of graph-distance convergent maximal monotone operators in a Hilbert space is a maximal monotone operator. Next, we show that a sequence of maximal monotone operators converging in the same sense in a reflexive Banach space is uni...

متن کامل

Some Observations on Local and Projective Hypersurfaces

Let R be a hypersurface in an equicharacteristic or unramified regular local ring. For a pair of modules (M, N) over R we study applications of rigidity of Tor(M, N), based on ideas by Huneke, Wiegand and Jorgensen. We then focus on the hypersurfaces with isolated singularity and even dimension, and show that modules over such rings behave very much like those over regular local rings. Connecti...

متن کامل

Uniform Boundedness Principle

The following two propositions are true: (1) For every sequence s1 of real numbers and for every real number r such that s1 is bounded and 0 ≤ r holds lim inf(r s1) = r · lim inf s1. (2) For every sequence s1 of real numbers and for every real number r such that s1 is bounded and 0 ≤ r holds lim sup(r s1) = r · lim sup s1. Let X be a real Banach space. One can verify that MetricSpaceNormX is co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 1991

ISSN: 0011-4642,1572-9141

DOI: 10.21136/cmj.1991.102434