SOME METHODS OF ADAPTIVE MULTILAYER NEURAL NETWORKS TRAINING
نویسندگان
چکیده
منابع مشابه
Training Methods for Adaptive Boosting of Neural Networks
"Boosting" is a general method for improving the performance of any learning algorithm that consistently generates classifiers which need to perform only slightly better than random guessing. A recently proposed and very promising boosting algorithm is AdaBoost [5]. It has been applied with great success to several benchmark machine learning problems using rather simple learning algorithms [4],...
متن کاملMultilayer neural networks: an experimental evaluation of on-line training methods
Artificial neural networks (ANN) are inspired by the structure of biological neural networks and their ability to integrate knowledge and learning. In ANN training, the objective is to minimize the error over the training set. The most popular method for training these networks is back propagation, a gradient descent technique. Other non-linear optimization methods such as conjugate directions ...
متن کاملEAST: An Exponential Adaptive Skipping Training Algorithm for Multilayer Feedforward Neural Networks
Multilayer Feedforward Neural Network (MFNN) has been administered widely for solving a wide range of supervised pattern recognition tasks. The major problem in the MFNN training phase is its long training time especially when it is trained on very huge training datasets. In this accordance, an enhanced training algorithm called Exponential Adaptive Skipping Training (EAST) Algorithm is propose...
متن کاملAn Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks.
The spiking neural networks (SNNs) are the third generation of neural networks and perform remarkably well in cognitive tasks such as pattern recognition. The spike emitting and information processing mechanisms found in biological cognitive systems motivate the application of the hierarchical structure and temporal encoding mechanism in spiking neural networks, which have exhibited strong comp...
متن کاملAdaptive dropout for training deep neural networks
Recently, it was shown that deep neural networks can perform very well if the activities of hidden units are regularized during learning, e.g, by randomly dropping out 50% of their activities. We describe a method called ‘standout’ in which a binary belief network is overlaid on a neural network and is used to regularize of its hidden units by selectively setting activities to zero. This ‘adapt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computing
سال: 2014
ISSN: 2312-5381,1727-6209
DOI: 10.47839/ijc.3.1.259