Some Inversion Formulas and Formulas for Stirling Numbers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Inversion Formulas and Formulas for Stirling Numbers

In the paper we present some new inversion formulas and two new formulas for Stirling numbers.

متن کامل

New formulas for Stirling-like numbers and Dobinski-like formulas

Extensions of the Stirling numbers of the second kind and Dobinski-like formulas are proposed in a series of exercises for graduetes. Some of these new formulas recently discovered by me are to be found in A.K.Kwaśniewski’s source paper [1]. These extensions naturally encompass the well known q-extensions.The indicatory references are to point at a part of the vast domain of the foundations of ...

متن کامل

Explicit Formulas and Combinatorial Identities for Generalized Stirling Numbers

In this paper, a modified approach to the multiparameter non-central Stirling numbers via differential operators, introduced by El-Desouky, and new explicit formulae of both kinds of these numbers are given. Also, some relations between these numbers and the generalized Hermite and Truesdel polynomials are obtained. Moreover, we investigate some new results for the generalized Stirling-type pai...

متن کامل

On umbral extensions of Stirling numbers and Dobinski-like formulas

ψ-umbral extensions of the Stirling numbers of the second kind are considered and the resulting new type of Dobinski-like formulas are discovered. These extensions naturally encompass the two well known q-extensions .The further consecutive ψ-umbral extensions of CarlitzGould q-Stirling numbers are therefore realized here in a two-fold way . The fact that the umbral q-extended Dobinski formula ...

متن کامل

Some Computational Formulas for D-Nِrlund Numbers

and Applied Analysis 3 It follows from 1.11 or 1.12 that t n, k t n − 2, k − 2 − 1 4 n − 2 t n − 2, k , 1.13 and that t n, 0 δn,0 n ∈ N0 : N ∪ {0} , t n, n 1 n ∈ N , t n, k 0 n k odd , t n, k 0 k > n or k < 0 , 1.14 where δm,n denotes the Kronecker symbol. By 1.13 , we have t 2n 1, 1 −1 n 2n ! 42n ( 2n n ) , t 2n 2, 2 −1 n n! 2 n ∈ N0 , 1.15 t 2n 2, 4 −1 n 1 n! 2 ( 1 1 22 1 32 · · · 1 n2 ) n ∈ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2012

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-012-1155-1