Some inverse mapping theorems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tame Nonsmooth Inverse Mapping Theorems

We give several versions of local and global inverse mapping theorem for tame non necessarily smooth, mappings. Here tame mapping means a mapping which is subanalytic or, more generally, definable in some o-minimal structure. Our sufficient conditions are formulated in terms of various properties (convexity, positivity of some principal minors, contractiblity) of the space of Jacobi’s matrices ...

متن کامل

On Some Embedding Theorems for Inverse Semigroups

A semilattice decomposition of an inverse semigroup has good internal mapping properties. These are used to give natural proofs of some embedding theorems, which were originally proved in a rather artificial way. The reader is referred to [1] for the basic theory of inverse semigroups. In an earlier paper [3] we proved the following embedding result: (1) An E-unitary inverse semigroup is isomor...

متن کامل

Some mapping theorems for extensional dimension

We present some results related to theorems of Pasynkov and Torunczyk on the geometry of maps of finite dimensional compacta.

متن کامل

Some Structure Theorems for Inverse Limits with Set-valued Functions

We investigate inverse limits with set-valued bonding functions. We generalize theorems of W. T. Ingram and William S. Mahavier, and of Van Nall, on the connectedness of the inverse limit space. We establish a fixed point theorem and show that under certain conditions, inverse limits with set-valued bonding functions can be realized as ordinary inverse limits. We also obtain some results that a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 1990

ISSN: 0294-1449

DOI: 10.1016/s0294-1449(16)30300-6