Some infinite classes of special Williamson matrices and difference sets
نویسندگان
چکیده
منابع مشابه
Some infinite classes of Williamson matrices and weighing matrices
Williamson type matrices A, B, C 1 D will be called nice if ABT + C DT = 0, perfect if ABT + CDT = ACT + BDT 0, special if ABT + CDT = ACT + BDT = ADT + BCT = o. Type 1 (1 , -1 )-matrices A, B, C, D of order n will be called tight Williamson-like matrices if AAT + BBT + CCT + DDT 4nIn and ABT + BAT + CDT + DCT o. Write N = 32T . piTl ••• p!Tn , where Pj 3(mod 4), Pj > 3, j = 1, ... ,n and r, rl...
متن کاملOn Some Special Classes of Sonnenschein Matrices
In this paper we consider the special classes of Sonnenschein matrices, namely the Karamata matrices $K[alpha,beta]=left(a_{n,k}right)$ with the entries [{a_{n,k}} = sumlimits_{v = 0}^k {left( begin{array}{l} n\ v end{array} right){{left( {1 - alpha - beta } right)}^v}{alpha ^{n - v}}left( begin{array}{l} n + k - v - 1\ ,,,,,,,,,,k...
متن کاملSome Infinite Classes of Hadamard Matrices
A recursive method of A. C. Mukhopadhay is used to obtain several new infinite classes of Hadamard matrices. Unfortunately none of these constructions give previously unknown Hadamard matrices of order <40,000. Disciplines Physical Sciences and Mathematics Publication Details Seberry, J, Some infinite families of Hadamard matrices, J Austral Math Soc, Ser. A, 29, 1980, 235-242. This journal art...
متن کاملSome Comments on Infinite Sets
Suppose that A is an infinite set. Constructing a denumerable subset {a1, a2, a3, . . .} of A, which is the same as showing that there is an injection f : Z −→ A, requires more than just mathematical induction. In these notes we explore some consequences of basic definitions con cerning infinite sets with the aid of mathematical induction only. We show that the set of rational numbers, and more...
متن کاملSome Infinite Classes of Fullerene Graphs
A fullerene graph is a 3 regular planar simple finite graph with pentagon or hexagon faces. In these graphs the number of pentagon faces is 12. Therefore, any fullerene graph can be characterized by number of its hexagon faces. In this note, for any h > 1, we will construct a fullerene graph with h hexagon faces. Then, using the leapfrogging process we will construct stable fullerenes with 20 +...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 1992
ISSN: 0097-3165
DOI: 10.1016/0097-3165(92)90020-u