Some functional forms of Blaschke–Santaló inequality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some functional forms of Blaschke-Santaló inequality

We establish new functional versions of the Blaschke-Santaló inequality on the volume product of a convex body which generalize to the nonsymmetric setting an inequality of K. Ball [2] and we give a simple proof of the case of equality. As a corollary, we get some inequalities for logconcave functions and Legendre transforms which extend the recent result of Artstein, Klartag and Milman [1], wi...

متن کامل

On some forms of e*-irresoluteness

‎The main goal of this paper is to introduce and study two new class of functions‎, ‎called weakly $e^*$-irresolute functions and strongly $e^*$-irresolute functions‎, ‎via the notion of $e^*$-open set defined by Ekici [7]. ‎We obtain several fundamental properties and characterizations of these functions‎. ‎Moreover‎, ‎we investigate not only some of their basic properties but also their relat...

متن کامل

Some new extensions of Hardy`s inequality

In this study, by a non-negative homogeneous kernel k we prove some extensions of Hardy's inequalityin two and three dimensions

متن کامل

An inequality between Willmore functional and Weyl functional for submanifolds in space forms

Let φ : M → Rn+p(c) be an n-dimensional submanifold in an (n + p)dimensional space form Rn+p(c) with the induced metric g. Willmore functional of φ is W (φ) = ∫M (S − nH2)n/2dv, where S = ∑ α,i, j (h α i j ) 2 is the square of the length of the second fundamental form, H is the mean curvature of M . The Weyl functional of (M, g) is ν(g) = ∫M |Wg|n/2dv, where |Wg|2 = ∑ i, j,k,l W 2 i jkl and Wi ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2006

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-006-0078-z