Some endpoint estimates for bilinear Coifman-Meyer multipliers

نویسندگان

چکیده

In this paper we establish mapping properties of bilinear Coifman-Meyer multipliers acting on the product spaces H1(Rn)×bmo(Rn) and Lp(Rn)×bmo(Rn), with 1<p<∞. As application these results, obtain some related Kato-Ponce-type inequalities involving endpoint space bmo(Rn), also study pointwise a function in bmo(Rn) functions H1(Rn), h1(Rn) Lp(Rn),

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endpoint Bilinear Restriction Theorems for the Cone, and Some Sharp Null Form Estimates

for some integer k. In both cases we call 2 the frequency of the waves φ, ψ. Red and blue waves both solve the free wave equation, but propagate along different sets of characteristics. Note that blue waves are the time reversal of red waves. Also, these waves are automatically smooth thanks to the frequency localization. The vector valued formulation will be convenient for technical reasons. W...

متن کامل

Bilinear multipliers and transference

(defined for Schwarzt test functions f and g in ) extends to a bounded bilinear operator from Lp1 (R)×Lp2 (R) into Lp3 (R). The theory of these multipliers has been tremendously developed after the results proved by Lacey and Thiele (see [16, 18, 17]) which establish that m(ξ,ν) = sign(ξ +αν) is a (p1, p2)-multiplier for each triple (p1, p2, p3) such that 1 < p1, p2 ≤∞, p3 > 2/3, and each α∈R \...

متن کامل

A homomorphism theorem for bilinear multipliers

In this paper we prove an abstract homomorphism theorem for bilinear multipliers in the setting of locally compact Abelian (LCA) groups. We also provide some applications. In particular, we obtain a bilinear abstract version of K. de Leeuw’s theorem for bilinear multipliers of strong and weak type. We also obtain necessary conditions on bilinear multipliers on non-compact LCA groups, yielding b...

متن کامل

Endpoint Estimates for Bilinear Oscillatory Integral Operators Related to Restriction to the Cone

We prove an endpoint estimate for oscillatory integral operators whose phase function satisfies the cinematic curvature condition. It is a generalization of a result due to Tao (2001).

متن کامل

Bilinear Factorization via Augmented Lagrange Multipliers

This paper presents a unified approach to solve different bilinear factorization problems in Computer Vision in the presence of missing data in the measurements. The problem is formulated as a constrained optimization problem where one of the factors is constrained to lie on a specific manifold. To achieve this, we introduce an equivalent reformulation of the bilinear factorization problem. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2021

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2021.124972