Some convergence theorems for continued fractions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Addition Theorems via Continued Fractions

We show connections between a special type of addition formulas and a theorem of Stieltjes and Rogers. We use different techniques to derive the desirable addition formulas. We apply our approach to derive special addition theorems for Bessel functions and confluent hypergeometric functions. We also derive several addition theorems for basic hypergeometric functions. Applications to the evaluat...

متن کامل

On the convergence acceleration of some continued fractions

A well known method for convergence acceleration of a continued fraction K(an/bn) is based on the use of modified approximants Sn(ωn) in place of the classical ones Sn(0), where ωn are close to tails f (n) of the continued fraction. Recently (Numer. Algorithms 41 (2006), 297–317), the author proposed an iterative method producing tail approximations whose asymptotic expansion’s accuracy is impr...

متن کامل

Convergence Conditions for Vector Stieltjes Continued Fractions

Necessary and sufficient conditions for the convergence of vector S-fractions are obtained, generalizing classical results of Stieltjes. A class of unbounded difference operators of high order possessing a set of spectral measures is described.

متن کامل

Some More Long Continued Fractions, I

In this paper we show how to construct several infinite families of polynomials D(x̄, k), such that p D(x̄, k) has a regular continued fraction expansion with arbitrarily long period, the length of this period being controlled by the positive integer parameter k. We also describe how to quickly compute the fundamental units in the corresponding real quadratic fields.

متن کامل

Explicit Descriptions of Some Continued Fractions

Recently, Bergman [2] provided an explicit, nonrecursive description of the partial quotients in (1), and by implication, in (2). (This description is our Theorem 3.) The purpose of this paper is to prove Bergman's result, and to provide similar results for the continued fractions given in [3] and [4]. We start off with some terminology about "strings." By a string9 we mean a (finite or infinit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1960

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1960-0117467-3