منابع مشابه
Semiparametrics, Nonparametrics and Empirical Bayes Procedures in Linear Models
In a classical parametric setup, a key factor in the implementation of the Empirical Bayes methodology is the incorporation of a suitable prior that is compatible with the parametric setup and yet lends to the estimation of the Bayes (shrinkage) factor in an empirical manner. The situation is more complex in semi-parametric and (ev,:,n more in) nonparametric models. Although the Dirichlet prior...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملEmpirical Bayes vs. Fully Bayes Variable Selection
For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, Cp, BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical B...
متن کاملAn Improved Bayes Empirical Bayes Estimator
Consider an experiment yielding an observable random quantity X whose distribution Fθ depends on a parameter θ with θ being distributed according to some distribution G0. We study the Bayesian estimation problem of θ under squared error loss function based on X, as well as some additional data available from other similar experiments according to an empirical Bayes structure. In a recent paper,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematical Statistics
سال: 1972
ISSN: 0003-4851
DOI: 10.1214/aoms/1177692705