منابع مشابه
Lectures on Nevanlinna theory
Value distribution of a rational function f is controlled by its degree d, which is the number of preimages of a generic point. If we denote by n(a) the number of solutions of the equation f(z) = a, counting multiplicity, in the complex plane C, then n(a) ≤ d for all a ∈ C with equality for all a with one exception, namely a = f(∞). The number of critical points of f in C, counting multiplicity...
متن کاملNevanlinna Theory and Rational Points
S. Lang [L] conjectured in 1974 that a hyperbolic algebraic variety defined over a number field has only finitely many rational points, and its analogue over function fields. We discuss the Nevanlinna-Cartan theory over function fields of arbitrary dimension and apply it for Diophantine property of hyperbolic projective hypersurfaces (homogeneous Diophantine equations) constructed by Masuda-Nog...
متن کاملParametric Nevanlinna-Pick Interpolation Theory
We consider the robust control problem for the system with real uncertainty. This type of problem can be represented with some parameters varying between the boundaries and is formulated as parametric Nevanlinna-Pick interpolation problem in this paper. The existence of a solution for such interpolation problem depends on the positivity of the corresponding Pick matrix with elements belonging t...
متن کاملNevanlinna Theory and Diophantine Approximation
As observed originally by C. Osgood, certain statements in value distribution theory bear a strong resemblance to certain statements in diophantine approximation, and their corollaries for holomorphic curves likewise resemble statements for integral and rational points on algebraic varieties. For example, if X is a compact Riemann surface of genus > 1, then there are no non-constant holomorphic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Series A I Mathematica
سال: 1982
ISSN: 0066-1953
DOI: 10.5186/aasfm.1982.0706