Solving the γ-ray radiative transfer equation for supernovae
نویسندگان
چکیده
منابع مشابه
A Grey Radiative Transfer Procedure for Γ-ray Transfer in Supernovae
The γ-ray transfer in supernovae for the purposes of energy deposition in the ejecta can be approximated fairly accurately as frequency-integrated (grey) radiative transfer using a mean opacity as shown by Swartz, Sutherland, & Harkness (SSH). In SSH’s grey radiative transfer procedure (unoptimized) the mean opacity is a pure absorption opacity and it is a constant aside from a usually weak com...
متن کاملA grey γ-ray transfer procedure for supernovae
The γ-ray transfer in supernovae for the purposes of energy deposition in the ejecta can be approximated as grey radiative transfer using mean opacities. In past work there is a single pure absorption mean opacity which is a free parameter. Accurate results can be obtained by varying this mean opacity to fit the results of more accurate procedures. In this paper, we present a grey γ-ray transfe...
متن کاملTime-dependent radiative transfer calculations for supernovae
In previous papers we discussed results from fully time-dependent radiative transfer models for core-collapse supernova (SN) ejecta, including the Type II-peculiar SN 1987A, the more ‘generic’ SN II-Plateau, and more recently Type IIb/Ib/Ic SNe. Here we describe the modifications to our radiative modelling code, CMFGEN, which allowed those studies to be undertaken. The changes allow for time-de...
متن کاملValidity conditions for the radiative transfer equation.
We compare the radiative transfer equation for media with constant refractive index with the radiative transfer equation for media with spatially varying refractive indices [J. Opt. A Pure App. Opt. 1, L1 (1999)] and obtain approximate conditions under which the former equation is accurate for modeling light propagation in scattering media with spatially varying refractive indices. These condit...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Notices of the Royal Astronomical Society
سال: 2019
ISSN: 0035-8711,1365-2966
DOI: 10.1093/mnras/stz1367