Solving systems of linear equations over polynomials
نویسندگان
چکیده
منابع مشابه
Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$. An $ntimes n$ complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$). In this paper, we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...
متن کاملSolving Linear Systems of Equations
Seeking a basis for the null space of a rectangular and possibly rank deficient and ill conditioned matrix we apply randomization, augmentation, and aggregation to reduce our task to computations with well conditioned matrices of full rank. Our algorithms avoid pivoting and orthogonalization, preserve matrix structure and sparseness, and in the case of an ill conditioned input perform only a sm...
متن کاملfinite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices
a matrix $pintextmd{c}^{ntimes n}$ is called a generalized reflection matrix if $p^{h}=p$ and $p^{2}=i$. an $ntimes n$ complex matrix $a$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $p$ if $a=pap$ ($a=-pap$). in this paper, we introduce two iterative methods for solving the pair of matrix equations $axb=c$ and $dxe=f$ over reflexiv...
متن کاملSolving sparse linear equations over finite fields
Ahstruct-A “coordinate recurrence” method for solving sparse systems of linear equations over finite fields is described. The algorithms discussed all require O( n,( w + nl) logkn,) field operations, where nI is the maximum dimension of the coefficient matrix, w is approximately the number of field operations required to apply the matrix to a test vector, and the value of k depends on the algor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1985
ISSN: 0304-3975
DOI: 10.1016/0304-3975(85)90131-8