Solving Riccati differential equation using Fourier polynomial basis
نویسندگان
چکیده
منابع مشابه
An exponential spline for solving the fractional riccati differential equation
In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...
متن کاملSolving Differential Riccati Equations Using BDF Methods
This technical report describes three approaches for solving the Differential Riccati Equation (DRE), by means of the Backward Differentiation Formula (BDF) and resolution of the corresponding implicit equation, using Newton's method. These approaches are based on: GMRES method, resolution of Sylvester equation and fixed point method. The role and use of DRE is especially important in optimal c...
متن کاملHe’s Variational Iteration Method for Solving Fractional Riccati Differential Equation
We will consider He’s variational iteration method for solving fractional Riccati differential equation. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converges to the exact solution of the problem. The present method performs extremely well in terms of efficiency ...
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملsolving nonlinear volterra integro-differential equation by using legendre polynomial approximations
in this paper, we construct a new iterative method for solving nonlinear volterra integral equation of second kind, by approximating the legendre polynomial basis. error analysis is worked using banach fixed point theorem. we compute the approximate solution without using numerical method. finally, some examples are given to compare the results with some of the existing methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Trends in Mathematical Science
سال: 2019
ISSN: 2147-5520
DOI: 10.20852/ntmsci.2019.363