Solving non-differentiable equations by a new one-point iterative method with memory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Iterative Method For Solving Fuzzy Integral ‎Equations

In the present work, by applying known Bernstein polynomials and their advantageous properties, we establish an efficient iterative algorithm to approximate the numerical solution of fuzzy Fredholm integral equations of the second kind. The convergence of the proposed method is given and the numerical examples illustrate that the proposed iterative algorithm are ‎valid.‎

متن کامل

A Three-Point Iterative Method for Solving Nonlinear Equations with High Efficiency Index

In this paper, we proposed a three-point iterative method for finding the simple roots of non- linear equations via mid-point and interpolation approach. The method requires one evaluation of the derivative and three(3) functions evaluation with efficiency index of 81/4 ≈ 1.682. Numerical results reported here, between the proposed method with some other existing methods shows that our method i...

متن کامل

A new iterative with memory class for solving nonlinear ‎equations‎

In this work we develop a new optimal without memory class for approximating a simple root of a nonlinear equation. This class includes three parameters. Therefore, we try to derive some with memory methods so that the convergence order increases as high as possible. Some numerical examples are also ‎presented.‎‎

متن کامل

A new iterative with memory class for solving nonlinear equations

In this work we develop a new optimal without memory class for approximating a simple root of a nonlinear equation. This class includes three parameters. Therefore, we try to derive some with memory methods so that the convergence order increases as high as possible. Some numerical examples are also presented.

متن کامل

A non-iterative method for solving non-linear equations

In this paper, using a hyperbolic tangent function tanhðbxÞ, b > 0, we develop a non-iterative method to estimate a root of an equation f(x) = 0. The problem of finding root is transformed to evaluating an integral, and thus we need not take account of choosing initial guess. The larger the value of b, the better the approximation to the root. Alternatively we employ the signum function sgnðxÞ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Complexity

سال: 2012

ISSN: 0885-064X

DOI: 10.1016/j.jco.2011.06.002