Solutions of Linear Differential Equations Having Maximal Growth
نویسندگان
چکیده
منابع مشابه
Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملGrowth of meromorphic solutions of higher-order linear differential equations
Abstract. In this paper, we investigate the higher-order linear differential equations with meromorphic coefficients. We improve and extend a result of M.S. Liu and C.L. Yuan, by using the estimates for the logarithmic derivative of a transcendental meromorphic function due to Gundersen, and the extended Winman-Valiron theory which proved by J. Wang and H.X. Yi. In addition, we also consider th...
متن کاملOscillation of Solutions of Linear Differential Equations
In this note we study the zeros of solutions of differential equations of the form u + pu = 0. A criterion for oscillation is found, and some sharper forms of the Sturm comparison theorem are given. §1. Number of zeros. Consider the linear differential equation u′′(x) + p(x) u(x) = 0 , where p(x) = 1 (1− x) , (1) on the interval −1 < x < 1. Two independent solutions are
متن کاملBoundedness of Solutions to Linear Differential Equations
In the case of a linear constant coefficient differential equation, & = Ax, where x is a (complex) n-vector and A is a (complex) nXn matrix, it is well known when all solutions are bounded; namely, if all eigenvalues of A are purely imaginary and all elementary divisions of A are simple. This condition is equivalent to the Jordan normal form, / , of A being (Hermitian) skew symmetric. That is i...
متن کاملLiouvillian solutions of linear difference-differential equations
For a field k with an automorphism σ and a derivation δ, we introduce the notion of liouvillian solutions of linear difference-differential systems {σ(Y ) = AY, δ(Y ) = BY } over k and characterize the existence of liouvillian solutions in terms of the Galois group of the systems. We will give an algorithm to decide whether such a system has liouvillian solutions when k = C(x, t), σ(x) = x + 1,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1996
ISSN: 0022-0396
DOI: 10.1006/jdeq.1996.0082