Solutions of a Quadratic Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems
نویسندگان
چکیده
منابع مشابه
An Inverse Eigenvalue Problem for Damped Gyroscopic Second-Order Systems
The inverse eigenvalue problem of constructing symmetric positive semidefinite matrixD written as D ≥ 0 and real-valued skew-symmetric matrix G i.e., G −G of order n for the quadratic pencilQ λ : λMa λ D G Ka, whereMa > 0,Ka ≥ 0 are given analytical mass and stiffness matrices, so that Q λ has a prescribed subset of eigenvalues and eigenvectors, is considered. Necessary and sufficient condition...
متن کاملAn Inverse Quadratic Eigenvalue Problem for Damped Structural Systems
We first give the representation of the general solution of the following inverse quadratic eigenvalue problem IQEP : given Λ diag{λ1, . . . , λp} ∈ Cp×p , X x1, . . . , xp ∈ Cn×p, and both Λ and X are closed under complex conjugation in the sense that λ2j λ2j−1 ∈ C, x2j x2j−1 ∈ C for j 1, . . . , l, and λk ∈ R, xk ∈ R for k 2l 1, . . . , p, find real-valued symmetric 2r 1 -diagonal matrices M,...
متن کاملSolutions to a quadratic inverse eigenvalue problem
In this paper, we consider the quadratic inverse eigenvalue problem (QIEP) of constructing real symmetric matrices M,C, and K of size n× n, with (M,C,K) / = 0, so that the quadratic matrix polynomial Q(λ) = λ2M + λC +K has m (n < m 2n) prescribed eigenpairs. It is shown that, for almost all prescribed eigenpairs, the QIEP has a solution with M nonsingular if m < m∗, and has only solutions with ...
متن کاملA numerical method for quadratic eigenvalue problems of gyroscopic systems
We consider the quadratic eigenvalues problem (QEP) of gyroscopic systems ðlMþ lGþ KÞx 1⁄4 0, where M 1⁄4 M>;G 1⁄4 G> and K 1⁄4 K> 2 R n with M being positive definite. Guo [Numerical solution of a quadratic eigenvalue problem, Linear Algebra and its Applications 385 (2004) 391–406] showed that all eigenvalues of the QEP can be found by solving the maximal solution of a nonlinear matrix equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2014
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2014/703178