منابع مشابه
Solution structures of DNA-bound gyrase
The DNA gyrase negative supercoiling mechanism involves the assembly of a large gyrase/DNA complex and conformational rearrangements coupled to ATP hydrolysis. To establish the complex arrangement that directs the reaction towards negative supercoiling, bacterial gyrase complexes bound to 137- or 217-bp DNA fragments representing the starting conformational state of the catalytic cycle were cha...
متن کاملFluoroquinolone Binding to DNA Gyrase
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes due to the presence of DNA breaks, have been crystallized an...
متن کاملMechanism of action of DNA gyrase
DNA gyrase is a bacterial motor protein in a class known as topoisomerases, which are responsible for controlling the topological properties of DNA (e.g. amount of supercoiling or catenation). Most topoisomerases can relax supercoiled DNA, which is an energetically favourable process. DNA gyrase is unique amongst this class, because it can introduce supercoils as well as remove them. To wind or...
متن کاملCrystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling
Reverse gyrase is an ATP-dependent topoisomerase that is unique to hyperthermophilic archaea and eubacteria. The only reverse gyrase structure determined to date has revealed the arrangement of the N-terminal helicase domain and the C-terminal topoisomerase domain that intimately cooperate to generate the unique function of positive DNA supercoiling. Although the structure has elicited hypothes...
متن کاملThe GyrA-box determines the geometry of DNA bound to gyrase and couples DNA binding to the nucleotide cycle
DNA gyrase catalyses the adenosine triphosphate-dependent introduction of negative supercoils into DNA. The enzyme binds a DNA-segment at the so-called DNA-gate and cleaves both DNA strands. DNA extending from the DNA-gate is bound at the perimeter of the cylindrical C-terminal domains (CTDs) of the GyrA subunit. The CTDs are believed to contribute to the wrapping of DNA around gyrase in a posi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 2010
ISSN: 1362-4962,0305-1048
DOI: 10.1093/nar/gkq799