منابع مشابه
An analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients
This paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients. At first, the non-self-adjoint spectral problem is derived. Then its adjoint problem is calculated. After that, for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined. Finally the convergence ...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملan analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients
this paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients. at first, the non-self-adjoint spectral problem is derived. then its adjoint problem is calculated. after that, for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined. finally the convergence ...
متن کاملApproximate solution of fourth order differential equation in Neumann problem
Generalized solution on Neumann problem of the fourth order ordinary differential equation in space $W^2_alpha(0,b)$ has been discussed, we obtain the condition on B.V.P when the solution is in classical form. Formulation of Quintic Spline Function has been derived and the consistency relations are given.Numerical method,based on Quintic spline approximation has been developed. Spline solution ...
متن کاملOn the Derivability, with Respect to the Initial Data, of the Solution of a Stochastic Differential Equation with Lipschitz Coefficients
We consider a stochastic differential equation, driven by a Brownian motion, with Lipschitz coefficients. We prove that the corresponding flow is, almost surely, almost everywhere derivable with respect to the initial data for any time, and the process defined by the Jacobian matrices is a GLn(R)-valued continuous solution of a linear stochastic differential equation. In dimension one, this pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1986
ISSN: 0022-247X
DOI: 10.1016/0022-247x(86)90070-3