Solution and Stability of a Mixed Type Additive, Quadratic, and Cubic Functional Equation
نویسندگان
چکیده
منابع مشابه
Orthogonal stability of mixed type additive and cubic functional equations
In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$ is orthogonality in the sense of Ratz.
متن کاملStability of a Mixed Type Additive, Quadratic and Cubic Functional Equation in Random Normed Spaces
In this paper, we obtain the general solution and the stability result for the following functional equation in random normed spaces (in the sense of Sherstnev) under arbitrary t-norms f(x + 3y) + f(x− 3y) = 9(f(x + y) + f(x− y))− 16f(x).
متن کاملorthogonal stability of mixed type additive and cubic functional equations
in this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$ is orthogonality in the sense of ratz.
متن کاملIntuitionistic fuzzy stability of a quadratic and quartic functional equation
In this paper, we prove the generalized Hyers--Ulamstability of a quadratic and quartic functional equation inintuitionistic fuzzy Banach spaces.
متن کاملStability of a mixed type quadratic, cubic and quartic functional equation
In this paper, we obtain the general solution and the generalized Hyers-Ulam Rassias stability of the functional equation 3(f(x+ 2y) + f(x− 2y)) = 12(f(x + y) + f(x− y)) + 4f(3y)− 18f(2y) + 36f(y)− 18f(x).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2009
ISSN: 1687-1839,1687-1847
DOI: 10.1155/2009/826130