Solid-On-Solid Interfaces with Disordered Pinning

نویسندگان

چکیده

We investigate the localization transition for a simple model of interface which interacts with an inhomonegeous defect plane. The is modeled by graph function $\phi: \mathbb Z^2 \to Z$,and disorder given fixed realization field IID centered random variables$(\omega_x)_{x\in Z^2}$. Hamiltonian system depends on three parameters $\alpha,\beta>0$ and $h\in R$ determine respectively intensity nearest neighbor interaction amplitude mean value substrate, expression $$\mathcal H(\phi):= \beta\sum_{x\sim y} |\phi(x)-\phi(y)|- \sum_{x} (\alpha\omega_x+h){\bf 1}_{\{\phi(x)=0\}}.$$ focus large-$\beta$/rigid phase Solid-On-Solid (SOS) model. In that regime, we provide sharp description in $h$ from localized to delocalized one corresponding respectivelly positive vanishing fraction points $\phi(x)=0$. prove critical corresponds annealed $h_c(\alpha)= -\log E[e^{\alpha \omega}]$, near point, free energy displays following behavior $$F_\beta(\alpha,h_c+u )\stackrel{u\to 0+}{\sim} \max_{n\ge 1} \left\{\theta_1 e^{-4\beta n} u- \frac{1}{2}\theta^2_1 e^{-8\beta \frac{\mathrm{Var}\left[e^{\alpha \omega}\right]}{\mathbb E \left[ e^{\alpha \omega} \right]^2}\right\}.$$ constant $\theta_1(\beta)>0$ defined asymptotic probability spikes infinite volume SOS $0$ boundary condition $\theta_1(\beta):=\lim_{n\to \infty} e^{4\beta n}\mathbf P_{\beta} (\phi({\bf 0})=n)$ ...

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Propagation of solid-liquid interfaces under disordered confinements

Recent progress in the synthesis of nanoporous materials with controlled structural properties made it possible to address various phenomena occurring in mesoscalic systems. Among them, different aspects of fluid phase transitions can now be related to the structural properties of the mesoporous matrices. In this work, we present the results of our experimental studies of crystal growth process...

متن کامل

Propagation of Solid-Liquid Interfaces in Disordered Linear Pores

1. Introduction Recent progress in the synthesis of nanoporous materials with controlled structural properties made it possible to address various phenomena occurring in mesoscalic molecular systems. Among them, different aspects of fluid phase transitions could now be related to the structural properties of mesoporous matrices. In particular, porous materials with well-defined pore geometries ...

متن کامل

Nonlinear Optical Spectroscopy of Solid/Solid Interfaces

Nonlinear Optical Spectroscopy of Solid/Solid Interfaces Mohsen S. Yeganeh Arjun G. Yodh Three-wave mixing (3WM) spectroscopy is an exciting and relatively unexplored probe of buried solid interfaces. It possesses long penetration depths characteristic of most optical methods and intrinsic interface specificity characteristic of second-order optical processes. In this thesis we present frequenc...

متن کامل

Chemical kinetics at solid – solid interfaces *

The kinetics of solid–solid interfaces controls in part the course of heterogeneous reactions in the solid state, in particular in miniaturized systems. In this paper, the essential situations of interface kinetics in solids are defined, and the basic formal considerations are summarized. In addition to the role interfaces play as resistances for transport across them, they offer high diffusivi...

متن کامل

Thermodynamics and roughening of solid-solid interfaces.

The dynamics of sharp interfaces separating two nonhydrostatically stressed solids is analyzed using the idea that the rate of mass transport across the interface is proportional to the thermodynamic potential difference across the interface. The solids are allowed to exchange mass by transforming one solid into the other, thermodynamic relations for the transformation of a mass element are der...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2021

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-021-03948-9