Snap denaturation reveals dimerization by AraC-like protein Rns
نویسندگان
چکیده
منابع مشابه
Strengthened arm-dimerization domain interactions in AraC.
Constitutive mutations were sought and found in the N-terminal arm of the Escherichia coli regulatory protein of the arabinose operon, AraC protein. A new mutation, N16D, was of particular interest. Asn-16 is not seen in the crystal structure of the AraC dimerization domain determined in the absence of arabinose, because the N-terminal arm 18 residues are disordered, but in the presence of arab...
متن کاملG-protein Coupled Receptor Dimerization
A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...
متن کاملBinding site recognition by Rns, a virulence regulator in the AraC family.
The expression of CS1 pili by enterotoxigenic strains of Escherichia coli is regulated at the transcriptional level and requires the virulence regulator Rns, a member of the AraC family of regulatory proteins. Rns binds at two separate sites upstream of Pcoo (the promoter of CS1 pilin genes), which were identified in vitro with an MBP::Rns fusion protein in gel mobility and DNase I footprinting...
متن کاملSpecific interactions by the N-terminal arm inhibit self-association of the AraC dimerization domain.
Deletion of the regulatory N-terminal arms of the AraC protein from its dimerization domain fragments increases the susceptibility of the dimerization domain to form a series of higher order polymers by indefinite self-association. We investigated how the normal presence of the arm inhibits this self-association. One possibility is that arms can act as an entropic bristles to interfere with the...
متن کاملHemiplegic mutations in AraC protein.
We have isolated mutations in AraC protein that specifically block either induction or repression at the ara pBAD promoter. These hemiplegic mutations identify amino acid residues that, correspondingly, are involved only in the induction or only in the repression activities of the protein. Residues key only for induction are 13, 15, and 18, which are located in the N-terminal arm of AraC, and r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biochimie
سال: 2012
ISSN: 0300-9084
DOI: 10.1016/j.biochi.2012.05.014