Smoothly symmetrizable hyperbolic systems of partial differential equations.
نویسندگان
چکیده
منابع مشابه
Hyperbolic Partial Differential Equations
Evolution equations associated with irreversible physical processes like diffusion and heat conduction lead to parabolic partial differential equations. When the equation is a model for a reversible physical process like propagation of acoustic or electromagnetic waves, then the evolution equation is generally hyperbolic. The mathematical models usually begin with a conservation statement that ...
متن کاملOscillation of the systems of impulsive hyperbolic partial differential equations
The systems of impulsive hyperbolic partial differential equations with Robin boundary value condition are investigated. Several new sufficient conditions of oscillation for such systems are established by employing impulsive differential inequalities and integration.
متن کاملHyperbolic Partial Differential Equations and Geometric Optics
§1.1. The method of characteristics §1.2. Examples of propagation of singularities using progressing waves §1.3. Group velocity and the method of nonstationary phase §1.4. Fourier synthesis and rectilinear propagation §1.5. A cautionary example in geometric optics §1.6. The law of reflection §1.6.1. The method of images §1.6.2. The plane wave derivation §1.6.3. Reflected high frequency wave pac...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کاملExact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATHEMATICA SCANDINAVICA
سال: 1987
ISSN: 1903-1807,0025-5521
DOI: 10.7146/math.scand.a-12203