Smoothed quantile regression analysis of competing risks
نویسندگان
چکیده
منابع مشابه
Quantile Regression Based on Semi-Competing Risks Data
This paper considers quantile regression analysis based on semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. The major interest is the covariate effects on the quantile of the non-terminal event time. Dependent censoring is handled by assuming that the joint distribution of the two event times follows a parametric copula model with unspecif...
متن کاملSmoothed quantile regression for panel data∗
This paper studies fixed effects estimation of quantile regression (QR) models with panel data. Previous studies show that there are two important difficulties with the standard QR estimation. First, the estimator can be biased because of the well-known incidental parameters problem. Secondly, the non-smoothness of the objective function significantly complicates the asymptotic analysis of the ...
متن کاملCumulative incidence in competing risks data and competing risks regression analysis.
Competing risks occur commonly in medical research. For example, both treatment-related mortality and disease recurrence are important outcomes of interest and well-known competing risks in cancer research. In the analysis of competing risks data, methods of standard survival analysis such as the Kaplan-Meier method for estimation of cumulative incidence, the log-rank test for comparison of cum...
متن کاملQuantile Regression for Competing Risks Data with Missing Cause of Failure.
This paper considers generalized linear quantile regression for competing risks data when the failure type may be missing. Two estimation procedures for the regression co-efficients, including an inverse probability weighted complete-case estimator and an augmented inverse probability weighted estimator, are discussed under the assumption that the failure type is missing at random. The proposed...
متن کاملSemiparametric analysis of mixture regression models with competing risks data.
In the analysis of competing risks data, cumulative incidence function is a useful summary of the overall crude risk for a failure type of interest. Mixture regression modeling has served as a natural approach to performing covariate analysis based on this quantity. However, existing mixture regression methods with competing risks data either impose parametric assumptions on the conditional ris...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrical Journal
سال: 2018
ISSN: 0323-3847,1521-4036
DOI: 10.1002/bimj.201700104