منابع مشابه
Smoothed Action Value Functions
State-action value functions (i.e., Q-values) are ubiquitous in reinforcement learning (RL), giving rise to popular algorithms such as SARSA and Q-learning. We propose a new notion of action value defined by a Gaussian smoothed version of the expected Q-value. We show that such smoothed Q-values still satisfy a Bellman equation, making them learnable from experience sampled from an environment....
متن کاملSmoothed Action Value Functions
State-action value functions (i.e., Q-values) are ubiquitous in reinforcement learning (RL), giving rise to popular algorithms such as SARSA and Q-learning. We propose a new notion of action value defined by a Gaussian smoothed version of the expected Q-value. We show that such smoothed Q-values still satisfy a Bellman equation, making them learnable from experience sampled from an environment....
متن کاملThe Initial Functions in a Subdivision Scheme
In this paper we shall study the initial functions in a subdivision scheme in a Sobolev space. By investigating the mutual relations among the initial functions in a subdivision scheme, we are able to study in a relatively uniied approach several questions related to a subdivision scheme in a Sobolev space such as convergence, error estimate and convergence rate of a subdivision scheme in a Sob...
متن کاملSmoothed Noise and Mexican Hat Coupling Produce Pattern in a Stochastic Neural Field
The formation of pattern in biological systems may be modeled by a set of reaction-diffusion equations. A diffusion-type coupling operator biologically significant in neuroscience is a difference of Gaussian functions (Mexican Hat operator) used as a spatial-convolution kernel. We are interested in the difference among behaviors of stochastic neural field equations, namely space-time stochastic...
متن کاملOnline Optimization of Smoothed Piecewise Constant Functions
We study online optimization of smoothed piecewise constant functions over the domain [0, 1). This is motivated by the problem of adaptively picking parameters of learning algorithms as in the recently introduced framework by Gupta and Roughgarden (2016). Majority of the machine learning literature has focused on Lipschitz-continuous functions, or functions with bounded gradients. This is with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2008
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.10.042