Smooth toral actions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toral Actions on 4-manifolds and Their Classifications

P. Orlik and F. Raymond showed, in [OR, I], the following: Suppose that M is a ^-dimensional closed simply-connected manifold with an effective T1-action. Then M is an equivariant connected sum of CP2, CP2, S2x S2 and S4. In [OR, II], they studied some non-simply-connected manifolds with an effective T2-action and proved that, if the manifolds have neither fixed points nor circle subgroups as s...

متن کامل

Topological Self-joinings of Cartan Actions by Toral Automorphisms

We show that if r ≥ 3 and α is a faithful Z-Cartan action on a torus T by automorphisms, then any closed subset of (T) which is invariant and topologically transitive under the diagonal Z-action by α is homogeneous, in the sense that it is either the full torus (T), or a finite set of rational points, or a finite disjoint union of parallel translates of some d-dimensional invariant subtorus. A ...

متن کامل

Central limit theorem for Z d + - actions by toral endomorphisms

In this paper we prove the central limit theorem for the following multisequence N1 ∑ n1=1 ... Nd ∑ nd=1 f(A1 1 ...A nd d x) where f is a Hölder’s continue function, A1, ..., Ad are s× s partially hyperbolic commuting integer matrices, and x is a uniformly distributed random variable in [0, 1]. Then we prove the functional central limit theorem, and the almost sure central limit theorem. The ma...

متن کامل

Symmetry Breaking for Toral Actions in Simple Mechanical Systems

For simple mechanical systems, bifurcating branches of relative equilibria with trivial symmetry from a given set of relative equilibria with toral symmetry are found. Lyapunov stability conditions along these branches are given.

متن کامل

Cohomologically Symplectic Spaces: Toral Actions and the Gottlieb Group

Aspects of symplectic geometry are explored from a homotopical viewpoint. In particular, the question of whether or not a given toral action is Hamiltonian is shown to be independent of geometry. Rather, a new homotopical obstruction is described which detects when an action is Hamiltonian. This new entity, the AA-invariant, allows many results of symplectic geometry to be generalized to manifo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 1983

ISSN: 0040-9383

DOI: 10.1016/0040-9383(83)90012-5