Smooth, easy to compute interpolating splines
نویسندگان
چکیده
منابع مشابه
Smooth, Easy to Computer Interpolating Splines
We present a system of interpolating splines with first and approximate second order geometric continuity. The curves are easily computed in linear time by solving a system of linear equations without the need to resort to any kind of successive approximation scheme. Emphasis is placed on the need to find aesthetically pleasing curves in a wide range of circumstances; favorable results are obta...
متن کاملGeodesic Interpolating Splines
We propose a simple and eecient method to interpolate landmark matching by a non-ambiguous mapping (a diieomorphism). This method is based on spline interpolation, and on recent techniques developed for the estimation of ows of diieomorphisms. Experimental results show interpolations of remarkable quality. Moreover, the method provides a Riemannian distance on sets of landmarks (with xed car-di...
متن کاملIF Approximation of Fourier Transforms and Certain Interpolating Splines
We extend to iP, X g p < °°, the L2 results of Bramble and Hilbert on convergence of discrete Fourier transforms and on approximation using smooth splines. The main tools are the estimates of [ 1 ] for linear functionals on Sobolev spaces and elementary results on Fourier multipliers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 1986
ISSN: 0179-5376,1432-0444
DOI: 10.1007/bf02187690