Small eigenvalues of the conformal Laplacian

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Eigenvalues of the Conformal Laplacian

We introduce a differential topological invariant for compact differentiable manifolds by counting the small eigenvalues of the Conformal Laplace operator. This invariant vanishes if and only if the manifold has a metric of positive scalar curvature. We show that the invariant does not increase under surgery of codimension at least three and we give lower and upper bounds in terms of the α-genus.

متن کامل

Eigenvalues of the Conformal Laplacian

We introduce a differential topological invariant for compact differentiable manifolds by counting the small eigenvalues of the Conformal Laplace operator. This invariant vanishes if and only if the manifold has a metric of positive scalar curvature. We show that the invariant does not increase under surgery of codimension at least three and we give lower and upper bounds in terms of the α-genus.

متن کامل

Extremal eigenvalues of the Laplacian in a conformal class of metrics : the ” conformal spectrum ”

Let M be a compact connected manifold of dimension n endowed with a conformal class C of Riemannian metrics of volume one. For any integer k ≥ 0, we consider the conformal invariant λk(C) defined as the supremum of the k-th eigenvalue λk(g) of the Laplace-Beltrami operator ∆g, where g runs over C. First, we give a sharp universal lower bound for λk(C) extending to all k a result obtained by Fri...

متن کامل

Eigenvalues of the normalized Laplacian

A graph can be associated with a matrix in several ways. For instance, by associating the vertices of the graph to the rows/columns and then using 1 to indicate an edge and 0 otherwise we get the adjacency matrix A. The combinatorial Laplacian matrix is defined by L = D − A where D is a diagonal matrix with diagonal entries the degrees and A is again the adjacency matrix. Both of these matrices...

متن کامل

Eigenvalues of the Laplacian acting on p - forms and metric conformal deformations

Let (M,g) be a compact connected orientable Riemannian manifold of dimension n ≥ 4 and let λk,p(g) be the k-th positive eigenvalue of the Laplacian ∆g,p = dd +dd acting on differential forms of degree p on M . We prove that the metric g can be conformally deformed to a metric g, having the same volume as g, with arbitrarily large λ1,p(g ) for all p ∈ [2, n − 2]. Note that for the other values o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometric And Functional Analysis

سال: 2003

ISSN: 1016-443X,1420-8970

DOI: 10.1007/s00039-003-0419-6