Small ball probabilities for Gaussian Markov processes under the Lp-norm
نویسندگان
چکیده
منابع مشابه
Small ball probabilities for Gaussian Markov processes under the Lp - norm ( Wenbo
Let {X (t); 06t61} be a real-valued continuous Gaussian Markov process with mean zero and covariance (s; t)=EX (s)X (t) 6= 0 for 0¡s; t ¡ 1. It is known that we can write (s; t)= G(min(s; t))H (max(s; t)) with G¿ 0; H ¿ 0 and G=H nondecreasing on the interval (0; 1). We show that for the Lp-norm on C[0; 1], 16p6∞ lim →0 2 logP(‖X (t)‖p ¡ ) =− p (∫ 1 0 (G′H − H ′G)p=(2+p) dt )(2+p)=p and its var...
متن کاملSmall Deviations for Gaussian Markov Processes Under the Sup-Norm
\. INTRODUCTION Let {X(t); 0 < t < 1} be a real-valued mean-zero Gaussian process, and let "||.||" be a semi-norm on the space of real functions on [0, 1]. The so called "small ball estimates" or "small deviation estimates" refer to the asymptotic behavior of This type of problem is quite delicate, and the asymptotic decay rate in (1.1), up to a constant, depends heavily on the process X(t) and...
متن کاملSmall Ball Probabilities for the Slepian Gaussian Fields
The d-dimensional Slepian Gaussian random field {S(t), t ∈ R+} is a mean zero Gaussian process with covariance function ES(s)S(t) = ∏d i=1 max(0, ai − |si − ti|) for ai > 0 and t = (t1, · · · , td) ∈ R+. Small ball probabilities for S(t) are obtained under the L2-norm on [0, 1]d, and under the sup-norm on [0, 1]2 which implies Talagrand’s result for the Brownian sheet. The method of proof for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2001
ISSN: 0304-4149
DOI: 10.1016/s0304-4149(00)00072-7