Slope Stability Prediction Using k-NN-Based Optimum-Path Forest Approach
نویسندگان
چکیده
Slope instability can lead to catastrophic consequences. However, predicting slope stability effectively is still challenging because of the complex mechanisms and multiple influencing factors. In recent years, machine learning (ML) has received great attention in prediction due its strong nonlinear ability. this study, an optimum-path forest algorithm based on k-nearest neighbor (OPFk-NN) was used predict slopes. First, 404 historical slopes with failure risk were collected. Subsequently, dataset train test randomly divided training sets, respectively. The hyperparameter values tuned by combining ten-fold cross-validation grid search methods. Finally, performance proposed approach evaluated accuracy, F1-score, area under curve (AUC), computational burden. addition, results compared other six ML algorithms. showed that OPFk-NN had a better performance, AUC, burden 0.901, 0.902, 0.957 s, Moreover, failed cases be accurately identified, which highly critical prediction. angle most important influence results. Furthermore, engineering application overall predictive model consistent factor safety value This study provide valuable guidance for analysis management.
منابع مشابه
Optimum Path Forest Approach for Image Retrieval based on Context
CBIR System consist of large datasets with millions of image samples for statistical analysis, hence putting tremendous challenge for pattern recognition techniques, which needs to be more efficient without compromising effectiveness. The image samples are stored in a database in the form of feature vectors. Pattern Recognition Technique requires a high computational burden for learning the dis...
متن کاملSupervised Pattern Classification Using Optimum-Path Forest
We present a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), and describe one of its classifiers developed for the supervised learning case. This classifier does not require parameters and can handle some overlapping among multiple classes with arbitrary shapes. The method reduces the pattern recognition problem into the computation of an optimum-path forest in ...
متن کاملLand Use Classification Using Optimum-Path Forest
It was introduced in this paper the Optimum-Path Forest for land use classification aiming a better environmental management, using images obtained from CBERS 2B CCD satellite covering the area of the Rio das Pedras watershed, Itatinga City, São Paulo State, Brazil. We also compared the Optimum-Path Forest algorithm with the well known supervised classifiers: Artificial Neural Networks using Mu...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2023
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11143071